34th Annual Conference American Association of Aerosol Research Minneapolis, Minnesota, USA October 2015

Emissions from Consumer 3D Printers

Qian Zhang¹, Jenny P. S. Wong², Aika Y. Davis³, Marilyn S. Black³, Rodney J. Weber²

- 1. School of Civil and Environmental Engineering, Georgia Institute of Technology
 - 2. School of Earth and Atmospheric Science, Georgia Institute of Technology
 - 3. Center for Human Health, Underwriters Laboratories Inc.

Introduction

Consumer-level 3D printers are widely used in both public areas and private residences, but little is known on emissions. A previous study observed substantial emissions of ultrafine particles¹, but sensitivities to printing or operating parameters are not well characterized.

Objectives:

- Study emissions and dynamics of particles generated from 3D printers
- Test parameters that influence emissions and characterize emissions by fewest factors

Method

Experimental System

Testing Parameters

- Print time, Object mass
- Filament color
- Filament brand
- Printer brand
- Filament material
- Nozzle temperature

Calculation of Particle Emission Rates²

Particle emission rate (PER(t)), s⁻¹

$$PER(t) = V_C \left(\frac{C_P(t) - C_P(t - \Delta t) \exp(-\beta \cdot \Delta t)}{\Delta t \exp(-\beta \cdot \Delta t)} \right)$$

• TP: total particle number emitted, #

$$TP = V_C \left(\frac{\Delta C_P}{t_{stop} - t_{start}} + \beta \cdot C_{av} \right) (t_{stop} - t_{start})$$

 $C_p(t)$: particle number concentration, #/cm³

 Δt : time interval between two successive data points, s

β: particle loss coefficient, s⁻¹

emission period, #/cm³

V_C: test chamber volume, cm³

 ΔC_p : concentration difference between t_{start} and t_{stop} , #/cm³

t_{start}: time when emission begins, s
 t_{stop}: time when emission stops, s
 C_{av}: arithmetic average concentration during

Emissions as a Function of Particle Size

Fig.3 (A) Total particle number, surface area (B) and mass (C) emissions as a function of particle size for three printing objects

Smaller particles (D_P <50nm) dominate number emissions, larger ones (100 to 200nm) dominate emissions of surface area and mass.

Yield=Particles Emitted per Print Time or Object Mass

Fig.2 (A) Linear fitting for object mass vs. print time;
(B) Total particle number concentration vs. time series for three printing objects.

Larger mass of object, longer printing time, more particles emitted.

Aerosol Physics

Fig.1 (A) Particle number, surface and mass concentration

Particle concentrations increase when printing started. Particles are generated from vapor nucleation and grow due to condensation and coagulation.

Fig.1 (B) Particle size distribution

Filament Color

Factors Controlling Particle Emission

Printer A, Filament: ABS 1

Table I Nullibel allu Mass Helu		
Number Yield, x10 ¹⁰ #/g	Mass Yield, μg/g	
7.3 ± 1.2	19.7 ± 3.2	
8.1 ± 0.5	20.3 ± 0.8	
5.3 ± 1.1	13.3 ± 4.7	
8.8 ± 0.5	24.8 ± 1.1	
9.9 ± 0.8	30.8 ± 5.7	
	$x10^{10} \#/g$ 7.3 ± 1.2 8.1 ± 0.5 5.3 ± 1.1 8.8 ± 0.5	

Table 1 Number and Mass Vield

Fig.4 Total particle number emission and least square linear fit for various colors.

The yield of different colors is within a range with magnitude of $1x10^{10}$ # particle/g object. Color is not a significant factor.

Filament Brand

Printer A, Filament: ABS 1 and 2

Fig.5 Total particle number emission and linear fit for two filament brands on the same printer

Yield of ABS 2 is 2.6-4.4 x10⁹ #/g, order less than ABS 1.

Filament Material

Table 2 Yield for different material

Filament	Number Yield, #/g
ABS 2 White (Printer A)	$(2.6 \pm 4.2) \times 10^9$
ABS 2 Red (Printer A)	$(4.3 \pm 1.9) \times 10^9$
ABS White (Printer C)	$(0.8 \pm 1.2) \times 10^9$
ABS Red (Printer C)	$(4.3 \pm 2.9) \times 10^8$
PLA White (Printer C)	$(6.2 \pm 2.6) \times 10^7$
PLA Red (Printer C)	1.1 x 10 ⁹
PLA White (Printer B)	$(8.1 \pm 0.5) \times 10^7$
PLA Red (Printer B)	6.7 x 10 ⁸
Nylon White (Printer A)	$(2.2 \pm 15.1) \times 10^{8}$

Preliminary results show ABS filament emits more particles than PLA and nylon material.

Printer Brand

Printer A and C Filament: ABS Red and White

Fig.6 Total particle number emission and linear fit for ABS on two printer brands

Yield of Printer C is 4.3-8.0 x 10⁸ #/g, order less than Printer A.

Nozzle Temperature

Printer A, Filament: ABS

Fig.7 Emissions vs. nozzle temperature

Exponential relationship between nozzle temperature and total particle number emission.

Conclusions

- Commercial 3D printer particle emission mass yields reach ~ 20 ppm
- Particle emissions as function of factors:
- Filament color (small effect)
- Filament brand (ABS 1>ABS 2)
- Printer brand (Printer A>C)
- Filament material (ABS>PLA~nylon)
- Nozzle Temp. (emissions increase exp.)

Acknowledgement

Funding is provided by UL Inc.

- Other work:
- Emissions of VOC
- Composition of particles
- Toxicity
- Development of testing standards

Reference

- 1. Brent S., et al. Atmospheric Environment. **2013**. 79, 334
- Blue Angel Ecolabel. Test method
 2012