

An Institute of Underwriters Laboratories Inc.

Investigating and Mitigating Health Impacts of 3D Printer Emissions

DR. CHRISTA WRIGHT

JULY 12, 2022

CSHEMA ANNUAL CONFERENCE

Setting Standards: Ensuring Safety

The Standard Method for Testing and Assessing Particle and Chemical Emissions from 3D Printers

- Objectives: Accurately measure particle and chemical emissions from 3D printers and minimize hazardous exposure to users
- ANSI/CAN/UL consensus standard
- Standard became publicly available on 1/31/2019
- 2 parts: test method and emissions criteria

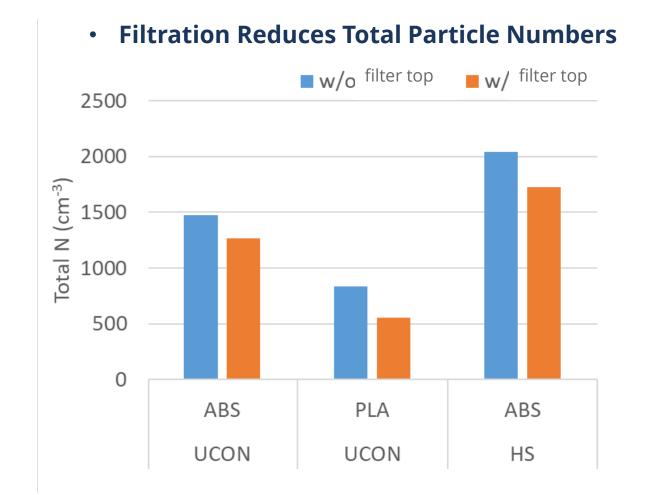

(UL)	G
ANSI/CAN/UL	2904 JOINT CANADA-UNITED STA NATIONAL STANDARD
STANDARD FOR	SAFETY
Standard Method f Assessing Particle Emissions from 3D	e and Chemical

Hazards include:

Inhalation and dermal exposure to:

- Volatile organic compounds
- Semi-volatile organic compounds
- Particles, including UFPs
- Carbon nanotubes
- Powders of various metals and polymers
- Burns, explosions, UV light, laser
- Mechanical injuries, shock, fire
- Hazard control and protection
 - Engineering controls
 - PPE if necessary

Health & Safety Concerns of 3D Printing



VOCs Detected During 3D Printing

Common VOCs detected from 3D printing

Chemical (health concern)		Detected from		
		PLA	Nylon	
Formaldehyde (carcinogen, eye, nose, throat, skin irritation)	\checkmark	\checkmark	\checkmark	
Benzene (carcinogen, eye, skin, respiratory irritation, reproductive effect)		\checkmark		
Styrene (probable carcinogen, odor, eye, respiratory system, reproductive, development, nervous system)	\checkmark		\checkmark	
Ethylbenzene (possible carcinogen, odor, liver, kidney, endocrine systems, development)	\checkmark	\checkmark	\checkmark	
Acetaldehyde (possible carcinogen, odor, eye & respiratory systems)	\checkmark	\checkmark	\checkmark	
Vinyl cyclohexene (possible carcinogen, reproductive & respiratory systems)	\checkmark	\checkmark		
Caprolactam (eye, skin, respiratory irritation, cardiovascular, central nervous systems, liver, kidney)			\checkmark	
Benzaldehyde (eye, skin, respiratory irritation)	\checkmark	\checkmark	\checkmark	
Methyl Methacrylate (odor, eyes, skin, and respiratory system)	\checkmark	\checkmark	\checkmark	
1-Butanol (odor, eyes, skin, respiratory system, central nervous system) ©2022 UNDERWRITERS LABORATORIES INC.	\checkmark	\checkmark	\checkmark	

3DP Emission Mitigation Strategy: Filtration

• Filtration can reduce particle concentration, but particles and VOCs are still present in the air!

Highlights and Take-Home Conclusions

- 3D printers emit significant levels of ultrafine particles and numerous VOCs
- Emission levels vary with specific print conditions
 - Filament material/brand and nozzle temperature are critical variables
- Exposure to ABS-emitted particles are toxic and due to high emission rates and levels, filtration strategies may be necessary
- Filtration strategies can reduce particle number and toxicity of ABS-emitted particles
- Additional studies are warranted to explore other mitigation strategies and their influence on toxicological properties of 3D printer emissions

Thank You

email chemicalinsights@ul.org